
1

An Overview of Trilinos

Jonathan Hu
 Sandia National Laboratories

Tenth DOE ACTS Collection Workshop
 August 20th, 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy under contract DE-AC04-94AL85000.

2

Outline of Talk

  Background / Motivation / Evolution.

  Trilinos Package Concepts.

  Whirlwind Tour of Trilinos Packages.

  Getting Started.

  Concluding remarks.

  Hands On Tutorial

3

Trilinos Development Team
Chris Baker
Developer of Anasazi, RBGen, Tpetra

Ross Bartlett
Lead Developer of Thyra and Stratimikos
Developer of Rythmos

Pavel Bochev
Project Lead and Developer of Intrepid

Paul Boggs
Developer of Thyra

Eric Boman
Lead Developer of Isorropia
Developer of Zoltan

Todd Coffey
Lead Developer of Rythmos

David Day
Developer of Komplex and Intrepid

Karen Devine
Lead Developer of Zoltan

Clark Dohrmann
Developer of CLAPS

Michael Gee
Developer of ML, NOX

Bob Heaphy
Lead Developer of Trilinos SQA

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, Komplex, IFPACK, Thyra, Tpetra
Developer of Amesos, Belos, EpetraExt, Jpetra

Ulrich Hetmaniuk
Developer of Anasazi

Robert Hoekstra
Lead Developer of EpetraExt
Developer of Epetra, Thyra, Tpetra

Russell Hooper
Developer of NOX

Vicki Howle
Lead Developer of Meros
Developer of Belos and Thyra

Jonathan Hu
Developer of ML

Sarah Knepper
Developer of Komplex

Tammy Kolda
Lead Developer of NOX

Joe Kotulski
Lead Developer of Pliris

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Lead Developer of Thyra, Sundance
Developer of Teuchos

Roger Pawlowski
Lead Developer of NOX, Phalanx
Developer of Shards, LOCA

Michael Phenow
Trilinos Webmaster
Lead Developer of New_Package

Eric Phipps
Lead Developer of Sacado
Developer of LOCA, NOX

Denis Ridzal
Lead Developer of Aristos and Intrepid

Marzio Sala
Lead Developer of Didasko and IFPACK
Developer of ML, Amesos

Andrew Salinger
Lead Developer of LOCA

Paul Sexton
Developer of Epetra and Tpetra

Bill Spotz
Lead Developer of PyTrilinos
Developer of Epetra, New_Package

Ken Stanley
Lead Developer of Amesos and New_Package

Heidi Thornquist
Lead Developer of Anasazi, Belos, RBGen, and Teuchos

Ray Tuminaro
Lead Developer of ML and Meros

Jim Willenbring
Developer of Epetra and New_Package.
Trilinos library manager

Alan Williams
Lead Developer of Isorropia
Developer of Epetra, EpetraExt, AztecOO, Tpetra

4

Sandia Physics Simulation Codes

  Element-based
  Finite element, finite volume,

finite difference, network, etc…

  Large-scale
  Billions of unknowns

  Parallel
  MPI-based SPMD
  Distributed memory

  C++
  Object oriented
  Some coupling to legacy Fortran

libraries

Fluids Combustion

Structures
Circuits

Plasmas

MEMS

5

Motivation For Trilinos
  Sandia does LOTS of solver work.
  9 years ago …

  Aztec was a mature package. Used in many codes.
  FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many

other codes were (and are) in use.
  New projects were underway or planned in multi-level

preconditioners, eigensolvers, non-linear solvers, etc…
  The challenges:

  Little or no coordination was in place to:
•  Efficiently reuse existing solver technology.
•  Leverage new development across various projects.
•  Support solver software processes.
•  Provide consistent solver APIs for applications.

  ASCI was forming software quality assurance/engineering (SQA/
SQE) requirements:

•  Daunting requirements for any single solver effort to address alone.

  Trilinos1 is an evolving framework to address these challenges:
  Follow a TOOLKIT approach.
  Fundamental atomic unit is a package.
  Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).
  Provides a common abstract solver API (Thyra package).
  Provides a ready-made package infrastructure (new_package package):

•  Source code management (cvs, bonsai).
•  Build tools (autotools for 9.0, cmake beginning with 10.0).
•  Automated regression testing (queue directories within repository).
•  Communication tools (mailman mail lists).

  Specifies requirements and suggested practices for package SQA.
  In general allows us to categorize efforts:

  Efforts best done at the Trilinos level (useful to most or all packages).
  Efforts best done at a package level (peculiar or important to a package).
  Allows package developers to focus only on things that are unique to

their package.

6

Evolving Trilinos Solution

1. Trilinos loose translation: “A string of pearls”

7

Evolving Trilinos Solution

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

uh=Lh
-1•fh

Algorithms

physics

computation

Linear
Nonlinear

Eigenvalues
Optimization

Automatic diff.
Domain dec.

Mortar methods

Time domain
Space domain

Petra
Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

  Beyond a “solvers” framework
  Natural expansion of capabilities to satisfy

application and research needs

  Discretization methods, AD, Mortar methods, …

Characterizing the Trilinos “Project”
  Not a “project” but an infrastructure to support inter-

related projects: A project of projects.
  Package participation is voluntary:

  Framework must be attractive (and continue to be).
  Requirements are few, opportunities are many.
  Package team decides what and when.
  Opt-out is always an option.

  Package autonomy is carefully guarded:
  Even if redundant development occurs.
  Decision-making pushed to lowest (best) level.

  Participation is attractive:
  Increasing infrastructure capabilities.
  Access to many other packages.

Trilinos Strategic Goals

•  Scalable Computations: As problem size and processor counts increase,
the cost of the computation will remain nearly fixed.

•  Hardened Computations: Never fail unless problem essentially
intractable, in which case we diagnose and inform the user why the problem
fails and provide a reliable measure of error.

•  Full Vertical Coverage: Provide leading edge enabling technologies
through the entire technical application software stack: from problem
construction, solution, analysis and optimization.

•  Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

•  Universal Accessibility: All Trilinos capabilities will be available to users
of major computing environments: C++, Fortran, Python and the Web, and
from the desktop to the latest scalable systems.

•  Universal Solver RAS: Trilinos will be:
–  Reliable: Leading edge hardened, scalable solutions for each of these

applications
–  Available: Integrated into every major application at Sandia
–  Serviceable: Easy to maintain and upgrade within the application

environment.

Algorithmic
Goals

Software
Goals

Target Platforms: Any and All
(Now and in the Future)

  Desktop: Development and more…
  Capability machines:

  Redstorm (XT3), Clusters
  Roadrunner (Cell-based).
  Multicore nodes.

  Parallel software environments:
  MPI of course.
  UPC, CAF, threads, vectors,…
  Combinations of the above.

  User “skins”:
  C++/C, Python
  Fortran.
  Web, CCA.

11

Trilinos Package Summary
http://trilinos.sandia.gov

Objective Package(s)

Discretizations
Meshing & Spatial Discretizations phdMesh, Intrepid, Phalanx, Shards, Pamgen, Sundance

Time Integration Rythmos

Optimization Optimization (SAND) MOOCHO, Aristos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Core

Linear algebra objects Epetra, Jpetra, Tpetra

Abstract interfaces Thyra, Stratimikos, RTOp

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, Star-P, ForTrilinos, CTrilinos

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos, Triutils

Preconditioners

Multigrid methods ML

Domain decomposition methods CLAPS, IFPACK

ILU-type methods AztecOO, IFPACK

Block preconditioners Meros

Solvers

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos

Direct dense linear solvers Epetra, Teuchos, Pliris

Nonlinear system solvers NOX, LOCA

Iterative eigenvalue solvers Anasazi

Stochastic PDEs Stokhos

12

Package Concepts

13

Interoperability vs. Dependence
 (“Can Use”) (“Depends On”)

  Although most Trilinos packages have no explicit
dependence, often packages must interact with some other
packages:
  NOX needs operator, vector and linear solver objects.
  AztecOO needs preconditioner, matrix, operator and vector objects.
  Interoperability is enabled at configure time. For example, NOX:

--enable-nox-lapack compile NOX lapack interface libraries
--enable-nox-epetra compile NOX epetra interface libraries
--enable-nox-petsc compile NOX petsc interface libraries

  Trilinos configure script is vehicle for:
  Establishing interoperability of Trilinos components…
  Without compromising individual package autonomy.

  Trilinos offers seven basic interoperability mechanisms.

14

Trilinos Interoperability Mechanisms
(Acquired as Package Matures)

Package builds under Trilinos
configure scripts.

⇒
Package can be built as part of a
suite of packages; cross-package
interfaces enable/disable
automatically

Package accepts user data as
Epetra or Thyra objects

⇒ Applications using Epetra/Thyra
can use package

Package accepts parameters
from Teuchos ParameterLists

⇒ Applications using Teuchos
ParameterLists can drive package

Package can be used via Thyra
abstract solver classes

⇒ Applications or other packages
using Thyra can use package

Package can use Epetra for
private data. ⇒ Package can then use other

packages that understand Epetra

Package accesses solver
services via Thyra interfaces

⇒ Package can then use other
packages that implement Thyra
interfaces

Package available via
PyTrilinos

⇒ Package can be used with other
Trilinos packages via Python.

15

What Trilinos is not …
  Trilinos is not a single monolithic piece of software. Each package:

  Can be built independent of Trilinos.
  Has its own self-contained CVS structure.
  Has its own Bugzilla product and mail lists.
  Development team is free to make its own decisions about algorithms,

coding style, release contents, testing process, etc.

  Trilinos top layer is not a large amount of source code:
  Trilinos repository (6.0 branch) contains: 660,378 source lines of code

(SLOC).
  Sum of the packages SLOC counts: 648,993.
  Trilinos top layer SLOC count: 11,385 (1.7%).

  Trilinos is not “indivisible”:
  You don’t need all of Trilinos to get things done.
  Any collection of packages can be combined and distributed.
  Current public release contains only 26 of the 30+ Trilinos packages.

16

Whirlwind Tour of Packages
Discretizations Methods Core Solvers/Preconditioners

17

Interoperable Tools for Rapid Development
of Compatible Discretizations Intrepid

Intrepid offers an innovative software design for compatible discretizations:

  allows access to FEM, FV and FD methods using a common API
  supports hybrid discretizations (FEM, FV and FD) on unstructured grids
  supports a variety of cell shapes:

  standard shapes (e.g. tets, hexes): high-order finite element methods
  arbitrary (polyhedral) shapes: low-order mimetic finite difference methods

  enables optimization, error estimation, V&V, and UQ using fast invasive techniques
(direct support for cell-based derivative computations or via automatic differentiation)

Direct: FV/D

Reconstruction

Cell Data

Reduction

Pullback: FEM

Higher order General cells

Λk

Forms
d,d*,,∧,(,)
Operations

{C0,C1,C2,C3}
Discrete forms

D,D*,W,M

Discrete ops.

Developers: Pavel Bochev and Denis Ridzal

18

Rythmos

  Suite of time integration (discretization) methods
  Includes: backward Euler, forward Euler, explicit Runge-Kutta,

and implicit BDF at this time.

  Native support for operator split methods.

  Highly modular.

  Forward sensitivity computations will be included in the first
release with adjoint sensitivities coming in near future.

Developers: Todd Coffey, Roscoe Bartlett

19

Whirlwind Tour of Packages
Discretizations Methods Core Solvers/Preconditioners

20

Sacado: Automatic Differentiation

  Efficient OO based AD tools optimized for element-level computations

  Applies AD at “element”-level computation
  “Element” means finite element, finite volume, network device,…

  Template application’s element-computation code
 Developers only need to maintain one templated code base

  Provides three forms of AD
 Forward Mode:

•  Propagate derivatives of intermediate variables w.r.t. independent variables forward
•  Directional derivatives, tangent vectors, square Jacobians, when m ≥ n.

 Reverse Mode:

•  Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
•  Gradients, Jacobian-transpose products (adjoints), when n > m.

 Taylor polynomial mode:

 Basic modes combined for higher derivatives.

Developers: Eric Phipps, David Gay

21

Whirlwind Tour of Packages
Discretizations Methods Core Solvers/Preconditioners

22

  Portable utility package of commonly useful tools:

  ParameterList class: key/value pair database, recursive capabilities.
  LAPACK, BLAS wrappers (templated on ordinal and scalar type).
  Dense matrix and vector classes (compatible with BLAS/LAPACK).
  FLOP counters, timers.
  Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.
  Reference counted pointers / arrays, and more…

  Takes advantage of advanced features of C++:
  Templates
  Standard Template Library (STL)

  Teuchos::ParameterList:
  Allows easy control of solver parameters.
  XML format input/output.

Developers: Roscoe Barlett, Kevin Long, Heidi Thornquist, Mike Heroux,
 Paul Sexton, Kris Kampshoff, Chris Baker

Teuchos

23

1Petra is Greek for “foundation”.

Trilinos Common Language: Petra
  Petra provides a “common language” for distributed

linear algebra objects (operator, matrix, vector)

  Petra1 provides distributed matrix and vector services.
  Exists in basic form as an object model:

  Describes basic user and support classes in UML,
independent of language/implementation.

  Describes objects and relationships to build and use
matrices, vectors and graphs.

  Has 3 implementations under development.

24

Petra Implementations

  Epetra (Essential Petra):
  Current production version.
  Restricted to real, double precision arithmetic.
  Uses stable core subset of C++ (circa 2000).
  Interfaces accessible to C and Fortran users.

  Tpetra (Templated Petra):
  Next generation C++ version.
  Templated scalar and ordinal fields.
  Uses namespaces, and STL: Improved usability/efficiency.

  Jpetra (Java Petra):
  Pure Java. Portable to any JVM.
  Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.

Developers: Chris Baker, Mike Heroux, Rob Hoekstra, Alan Williams

25

EpetraExt: Extensions to Epetra

  Library of useful classes not needed by everyone

  Most classes are types of “transforms”.
  Examples:

  Graph/matrix view extraction.
  Epetra/Zoltan interface.
  Explicit sparse transpose.
  Singleton removal filter, static condensation filter.
  Overlapped graph constructor, graph colorings.
  Permutations.
  Sparse matrix-matrix multiply.
  Matlab, MatrixMarket I/O functions.
  Wrapper for PETSc aij matrices.

  Most classes are small, useful, but non-trivial to write.

Developers: Robert Hoekstra, Alan Williams, Mike Heroux, many others

26

Trilinos / PETSc Interoperability

  Epetra_PETScAIJMatrix class
  Derives from Epetra_RowMatrix
  Wrapper for serial/parallel PETSc aij matrices
  Utilizes callbacks for matrix-vector product, getrow
  No deep copies

  Enables PETSc application to construct and call virtually any
Trilinos preconditioner
  ML, Ifpack, AztecOO, …
  All Trilinos options immediately available via parameter lists

  ML accepts fully constructed PETSc KSP solvers as smoothers
  Fine grid only
  Assumes fine grid matrix is really PETSc aij matrix
  Complements Epetra_PETScAIJMatrix class

•  For any smoother with getrow kernel, PETSc implementation should be *much*
faster than Trilinos

•  For any smoother with matrix-vector product kernel, PETSc and Trilinos
implementations should be comparable

27

Thyra
  High-performance, abstract interfaces for linear algebra

  Offers flexibility through abstractions to algorithm developers

  Linear solvers (Direct, Iterative, Preconditioners)
  Abstraction of basic vector/matrix operations (dot, axpy, mv).
  Can use any concrete linear algebra library (Epetra, PETSc, BLAS).

  Nonlinear solvers (Newton, etc.)
  Abstraction of linear solve (solve Ax=b).
  Can use any concrete linear solver library:

•  AztecOO, Belos, ML, PETSc, LAPACK

  Transient/DAE solvers (implicit)
  Abstraction of nonlinear solve.
  … and so on.

Developers: Roscoe Bartlett, Kevin Long

Stratimikos
•  Stratimikos created Greek words "stratigiki“ (strategy) and "grammikos“ (linear)

•  Defines class Thyra::DefaultLinearSolverBuilder.

•  Provides common access to:

• Linear Solvers: Amesos, AztecOO, Belos, …

• Preconditioners: Ifpack, ML, …

• Reads in options through a parameter list (read from XML?)

• Accepts any linear system objects that provide

• Epetra_Operator / Epetra_RowMatrix view of the matrix

• SPMD vector views for the RHS and LHS (e.g. Epetra_[Multi]Vector objects)

•  Provides uniform access to linear solver options that can be leveraged across multiple
applications and algorithms

Key Points
•  Stratimikos is an important building

block for creating more sophisticated
linear solver capabilities!

Stratimikos Parameter List and Sublists
<ParameterList name=“Stratimikos”>
 <Parameter name="Linear Solver Type" type="string" value=“AztecOO"/>
 <Parameter name="Preconditioner Type" type="string" value="Ifpack"/>
 <ParameterList name="Linear Solver Types">
 <ParameterList name="Amesos">
 <Parameter name="Solver Type" type="string" value="Klu"/>
 <ParameterList name="Amesos Settings">
 <Parameter name="MatrixProperty" type="string" value="general"/>
 ...
 <ParameterList name="Mumps"> ... </ParameterList>
 <ParameterList name="Superludist"> ... </ParameterList>
 </ParameterList>
 </ParameterList>
 <ParameterList name="AztecOO">
 <ParameterList name="Forward Solve">
 <Parameter name="Max Iterations" type="int" value="400"/>
 <Parameter name="Tolerance" type="double" value="1e-06"/>
 <ParameterList name="AztecOO Settings">
 <Parameter name="Aztec Solver" type="string" value="GMRES"/>
 ...
 </ParameterList>
 </ParameterList>
 ...
 </ParameterList>
 <ParameterList name="Belos"> ... </ParameterList>
 </ParameterList>
<ParameterList name="Preconditioner Types">
 <ParameterList name="Ifpack">
 <Parameter name="Prec Type" type="string" value="ILU"/>
 <Parameter name="Overlap" type="int" value="0"/>
 <ParameterList name="Ifpack Settings">
 <Parameter name="fact: level-of-fill" type="int" value="0"/>
 ...
 </ParameterList>
 </ParameterList>
 <ParameterList name="ML"> ... </ParameterList>
 </ParameterList>
</ParameterList>

Linear Solvers
Preconditioners

Sublists passed
on to package

code!

Top level parameters

Every parameter
and sublist is

handled by Thyra
code and is fully

validated!

30

“Skins”
  PyTrilinos provides Python access to Trilinos packages

  Uses SWIG to generate bindings.
  Epetra, AztecOO, IFPACK, ML, NOX, LOCA, Amesos and

NewPackage are supported.

  WebTrilinos: Web interface to Trilinos

  Generate test problems or read from file.
  Generate C++ or Python code fragments and click-run.
  Hand modify code fragments and re-run.
  Will use during hands-on.

Developers: Ray Tuminaro, Jonathan Hu, and Marzio Sala

Developer: Bill Spotz

31

Whirlwind Tour of Packages
Discretizations Methods Core Solvers/Preconditioners

32

  Interface to direct solvers for distributed sparse linear
systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

  Challenges:
  No single solver dominates
  Different interfaces and data formats, serial and parallel
  Interface often changes between revisions

  Amesos offers:
  A single, clear, consistent interface, to various packages
  Common look-and-feel for all classes
  Separation from specific solver details
  Use serial and distributed solvers; Amesos takes care of data

redistribution
  Native solvers: KLU and Paraklete

Developers: Ken Stanley, Marzio Sala, Tim Davis

Amesos

33

AztecOO
  Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,…
  Incomplete factorization preconditioners

  Aztec is the workhorse solver at Sandia:
  Extracted from the MPSalsa reacting flow code.
  Installed in dozens of Sandia apps.
  1900+ external licenses.

  AztecOO improves on Aztec by:
  Using Epetra objects for defining matrix and RHS.
  Providing more preconditioners/scalings.
  Using C++ class design to enable more sophisticated use.

  AztecOO interfaces allows:
  Continued use of Aztec for functionality.
  Introduction of new solver capabilities outside of Aztec.

Developers: Mike Heroux, Alan Williams, Ray Tuminaro

34

Belos
  Next-generation linear solver library, written in templated C++.

  Provide a generic framework for developing iterative algorithms for solving large-scale,
linear problems.

  Algorithm implementation is accomplished through the use of traits classes and abstract
base classes:
  Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits
  Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
  Status tests: Belos::StatusTest, Belos::StatusTestResNorm
  Iteration kernels: Belos::Iteration
  Linear solver managers: Belos::SolverManager

  AztecOO provides solvers for Ax=b, what about solvers for:
  Simultaneously solved systems w/ multiple-RHS: AX = B
  Sequentially solved systems w/ multiple-RHS: AXi = Bi , i=1,…,t
  Sequences of multiple-RHS systems: AiXi = Bi , i=1,…,t

  Many advanced methods for these types of linear systems
  Block methods: block GMRES [Vital], block CG/BICG [O’Leary]
  “Seed” solvers: hybrid GMRES [Nachtigal, et al.]
  Recycling solvers: recycled Krylov methods [Parks, et al.]
  Restarting techniques, orthogonalization techniques, …

Developers: Heidi Thornquist, Mike Heroux, Mike Parks,
 Rich Lehoucq, Teri Barth

35

IFPACK: Algebraic Preconditioners
  Overlapping Schwarz preconditioners with incomplete

factorizations, block relaxations, block direct solves.

  Accept user matrix via abstract matrix interface (Epetra
versions).

  Uses Epetra for basic matrix/vector calculations.

  Supports simple perturbation stabilizations and condition
estimation.

  Separates graph construction from factorization, improves
performance substantially.

  Compatible with AztecOO, ML, Amesos. Can be used by
NOX and ML.

Developers: Marzio Sala, Mike Heroux

36

 : Multi-level Preconditioners
  Smoothed aggregation multigrid, domain decomposition

preconditioning, nonsymm. multigrid

  Critical technology for scalable performance of some key
apps.

  ML compatible with other Trilinos packages:
  Accepts user data as Epetra_RowMatrix object (abstract interface).

Any implementation of Epetra_RowMatrix works.

  Implements the Epetra_Operator interface. Allows ML preconditioners
to be used with AztecOO, Belos, Anasazi.

  Can also be used independently of other Trilinos packages.

Developers: Ray Tuminaro, Jonathan Hu, Chris Siefert, Michael Gee

37

Anasazi
  Next-generation eigensolver library, written in templated C++.

  Provide a generic framework for developing iterative algorithms for solving large-scale
eigenproblems.

  Algorithm implementation is accomplished through the use of traits classes and
abstract base classes:
  Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits
  Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
  Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm
  Iteration kernels: Anasazi::Eigensolver
  Eigensolver managers: Anasazi::SolverManager
  Eigenproblem: Anasazi::Eigenproblem
  Sort managers: Anasazi::SortManager

  Currently has solver managers for three eigensolvers:
  Block Krylov-Schur
  Block Davidson
  LOBPCG

  Can solve:
  standard and generalized eigenproblems
  Hermitian and non-Hermitian eigenproblems
  real or complex-valued eigenproblems

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,
 Rich Lehoucq, Ulrich Hetmaniuk

38

NOX: Nonlinear Solvers
  Suite of nonlinear solution methods

Implementation
•  Parallel
•  OO-C++
•  Independent of the

linear algebra
package!

Jacobian Estimation
•  Graph Coloring
•  Finite Difference
•  Jacobian-Free

Newton-Krylov

Broydenʼs Method Newtonʼs Method Tensor Method

Globalizations
Trust Region

Dogleg
Inexact Dogleg

Line Search
Interval Halving 

Quadratic
Cubic

Moreʼ-Thuente

http://trilinos.sandia.gov/packages/nox

Developers: Tammy Kolda, Roger Pawlowski

39

LOCA
  Library of continuation algorithms

  Provides
  Zero order continuation
  First order continuation
  Arc length continuation
  Multi-parameter continuation (via Henderson's MF Library)
  Turning point continuation
  Pitchfork bifurcation continuation
  Hopf bifurcation continuation
  Phase transition continuation
  Eigenvalue approximation (via ARPACK or Anasazi)

Developers: Andy Salinger, Eric Phipps

40

MOOCHO & Aristos
  MOOCHO: Multifunctional Object-Oriented arCHitecture

for Optimization

  Large-scale invasive simultaneous analysis and design
(SAND) using reduced space SQP methods.

  Aristos: Optimization of large-scale design spaces

  Invasive optimization approach based on full-space SQP
methods.

  Efficiently manages inexactness in the inner linear system
solves.

Developer: Denis Ridzal

Developer: Roscoe Bartlett

Full Vertical  
Solver Coverage

Bifurcation Analysis LOCA

DAEs/ODEs:
Transient Problems

Rythmos

Eigen Problems:
Linear Equations:

 Linear Problems
AztecOO

Belos
Ifpack, ML, etc...

Anasazi

Vector Problems:
Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:
Constrained:

Nonlinear Problems NOXSe
ns

iti
vi

tie
s

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)

42

Trilinos Integration into an
Application

Where to start?
http://trilinos.sandia.gov

Export Makefile System

Once Trilinos is built, how do you link against the application?

There are a number of issues:

•  Library link order:
•  -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack

•  Consistent compilers:
•  g++, mpiCC, icc…

•  Consistent build options and package defines:
•  g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

Answer: Export Makefile system

Why Export Makefiles are Important

•  The number of packages in Trilinos has exploded.
• As package dependencies (especially optional ones) are

introduced, more maintenance is required by the top-level
packages:

NOX Amesos

EpetraExt

Epetra

Ifpack

ML SuperLU

Direct Dependencies Indirect Dependencies

NOX either must:
• Account for the new libraries in its configure script (not scalable)
• Depend on direct dependency packages to supply them through

“export” Makefiles.

New Library New Library

Export Makefiles in Action

Example Makefile for a user application that does not use autoconf
- Uses lapack concrete instantions for group and vector
- Must use gnu-make (gmake) if the "shell" command is invoked

Set the Trilinos install directory

TRILINOS_INSTALL_DIR = /home/rppawlo/trilinos-local-install

Include any direct Trilinos library dependencies - in this case only nox

include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.nox.macros
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.nox

Use one of the following lines (2nd line is for non-gnumake platforms)

COMPILE_FLAGS = $(shell perl $(TRILINOS_INSTALL_DIR)/include/strip_dup_incl_paths.pl $(NOX_CXXFLAGS) $(NOX_DEFS)
$(NOX_CPPFLAGS) $(NOX_INCLUDES))

COMPILE_FLAGS = $(NOX_CXXFLAGS) $(NOX_DEFS) $(NOX_CPPFLAGS) $(NOX_INCLUDES)

Use one of the following lines (2nd line is for non-gnumake platforms)

LINK_FLAGS = $(shell perl $(TRILINOS_INSTALL_DIR)/include/strip_dup_libs.pl $(NOX_LIBS))
LINK_FLAGS = $(NOX_LIBS)

Build your application code ##
main.exe: main.o
 $(NOX_CXXLD) $(NOX_CXXFLAGS) -o main.exe main.o $(LINK_FLAGS)

main.o: main.cpp
 $(NOX_CXX) $(COMPILE_FLAGS) -c main.cpp

clean: rm -f *.o main.exe *~

46

Concluding Remarks

47

Trilinos Availability / Information
  Trilinos and related packages are available via LGPL.

  Current release (9.0) is “click release”. Unlimited availability.
  Trilinos alpha release (cmake build preview): July, 2009

  Trilinos Release 10.0: September 2009.

  Trilinos Awards:
  2004 R&D 100 Award.
  SC2004 HPC Software Challenge Award.
  Sandia Team Employee Recognition Award.
  Lockheed-Martin Nova Award Nominee.

  More information:
  http://trilinos.sandia.gov

  6th Annual Trilinos User Group Meeting in October 2008 @ SNL
  talks available for download

  Next TUG is November 3-5, 2009 at Sandia/Albuquerque

Useful Links

Trilinos website: http://trilinos.sandia.gov

Trilinos tutorial: http://trilinos.sandia.gov/Trilinos8.0Tutorial.pdf

Trilinos mailing lists: http://trilinos.sandia.gov/mail_lists.html

Trilinos User Group (TUG) meetings:
http://trilinos.sandia.gov/events/trilinos_user_group_2008
http://trilinos.sandia.gov/events/trilinos_user_group_2007

48

